Using Slow Feature Analysis to Improve the Reactivity of a Humanoid Robot's Sensorimotor Gait Pattern
نویسندگان
چکیده
This paper presents an approach for increasing the reactivity of a humanoid robot’s gait, incorporating Slow Feature Analysis (SFA), an unsupervised learning algorithm issuing from the domain of theoretical biology. The main objective of this work is to find a means to detect disturbances in the gait pattern at an early stage without losing stability. Another goal is to investigate the general potential of SFA for using it within sensorimotor loops which to our knowledge has not been considered until now. The application of SFA within sensorimotor loops is motivated by pointing out its relation to second-order Volterra filters. Our experiments show that the overall reactivity of the gait pattern increases without any profound loss in stability, and that SFA appears to be suitable for the usage even at such levels of sensorimotor control that are directly involved into motor activity regulation.
منابع مشابه
A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملAnalytical Dynamic Modelling of Heel-off and Toe-off Motions for a 2D Humanoid Robot
The main objective of this article is to optimize the walking pattern of a 2D humanoid robot with heel-off and toe-off motions in order to minimize the energy consumption and maximize the stability margin. To this end, at first, a gait planning method is introduced based on the ankle and hip joint position trajectories. Then, using these trajectories and the inverse kinematics, the position tra...
متن کاملAudio-visual feedback improves the BCI performance in the navigational control of a humanoid robot
Advancement in brain computer interfaces (BCI) technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent...
متن کاملThe Differences in Sensorimotor Rhythm Power During Performing In-Phase and Anti-Phase Patterns in Bimanual Coordination
Purpose: The sensorimotor cortex oscillations (frequency ranging between 12 and 15 Hz), commonly known as Sensorimotor Rhythm (SMR) has previously displayed a promising link between the performance of the visuomotor related to skill execution and part of psychology that is adaptive (e.g. the process linked attention which is automatic). This study examined the extent of SMR power in the executi...
متن کاملOptimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk
Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...
متن کامل